Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Immunol ; 25(5): 847-859, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38658806

RESUMEN

Immune cells need to sustain a state of constant alertness over a lifetime. Yet, little is known about the regulatory processes that control the fluent and fragile balance that is called homeostasis. Here we demonstrate that JAK-STAT signaling, beyond its role in immune responses, is a major regulator of immune cell homeostasis. We investigated JAK-STAT-mediated transcription and chromatin accessibility across 12 mouse models, including knockouts of all STAT transcription factors and of the TYK2 kinase. Baseline JAK-STAT signaling was detected in CD8+ T cells and macrophages of unperturbed mice-but abrogated in the knockouts and in unstimulated immune cells deprived of their normal tissue context. We observed diverse gene-regulatory programs, including effects of STAT2 and IRF9 that were independent of STAT1. In summary, our large-scale dataset and integrative analysis of JAK-STAT mutant and wild-type mice uncovered a crucial role of JAK-STAT signaling in unstimulated immune cells, where it contributes to a poised epigenetic and transcriptional state and helps prepare these cells for rapid response to immune stimuli.


Asunto(s)
Homeostasis , Quinasas Janus , Macrófagos , Ratones Noqueados , Factores de Transcripción STAT , Transducción de Señal , Animales , Ratones , Macrófagos/inmunología , Macrófagos/metabolismo , Quinasas Janus/metabolismo , Factores de Transcripción STAT/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Ratones Endogámicos C57BL , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , TYK2 Quinasa/metabolismo , TYK2 Quinasa/genética , Regulación de la Expresión Génica
2.
Immunity ; 56(8): 1809-1824.e10, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37499656

RESUMEN

Complement factor H (CFH) negatively regulates consumption of complement component 3 (C3), thereby restricting complement activation. Genetic variants in CFH predispose to chronic inflammatory disease. Here, we examined the impact of CFH on atherosclerosis development. In a mouse model of atherosclerosis, CFH deficiency limited plaque necrosis in a C3-dependent manner. Deletion of CFH in monocyte-derived inflammatory macrophages propagated uncontrolled cell-autonomous C3 consumption without downstream C5 activation and heightened efferocytotic capacity. Among leukocytes, Cfh expression was restricted to monocytes and macrophages, increased during inflammation, and coincided with the accumulation of intracellular C3. Macrophage-derived CFH was sufficient to dampen resolution of inflammation, and hematopoietic deletion of CFH in atherosclerosis-prone mice promoted lesional efferocytosis and reduced plaque size. Furthermore, we identified monocyte-derived inflammatory macrophages expressing C3 and CFH in human atherosclerotic plaques. Our findings reveal a regulatory axis wherein CFH controls intracellular C3 levels of macrophages in a cell-autonomous manner, evidencing the importance of on-site complement regulation in the pathogenesis of inflammatory diseases.


Asunto(s)
Aterosclerosis , Complemento C3 , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Inflamación , Macrófagos/metabolismo
3.
Cancers (Basel) ; 14(22)2022 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-36428769

RESUMEN

The application of monoclonal antibodies (mAbs), targeting tumor-associated (TAAs) or tumor-specific antigens or immune checkpoints (ICs), has shown tremendous success in cancer therapy. However, the application of mAbs suffers from a series of limitations, including the necessity of frequent administration, the limited duration of clinical response and the emergence of frequently pronounced immune-related adverse events. However, the introduction of mAbs has also resulted in a multitude of novel developments for the treatment of cancers, including vaccinations against various tumor cell-associated epitopes. Here, we reviewed recent clinical trials involving combination therapies with mAbs targeting the PD-1/PD-L1 axis and Her-2/neu, which was chosen as a paradigm for a clinically highly relevant TAA. Our recent findings from murine immunizations against the PD-1 pathway and Her-2/neu with peptides representing the mimotopes/B cell peptides of therapeutic antibodies targeting these molecules are an important focus of the present review. Moreover, concerns regarding the safety of vaccination approaches targeting PD-1, in the context of the continuing immune response, as a result of induced immunological memory, are also addressed. Hence, we describe a new frontier of cancer treatment by active immunization using combined mimotopes/B cell peptides aimed at various targets relevant to cancer biology.

4.
Elife ; 112022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-36178806

RESUMEN

Sepsis is a life-threatening condition characterized by uncontrolled systemic inflammation and coagulation, leading to multiorgan failure. Therapeutic options to prevent sepsis-associated immunopathology remain scarce. Here, we established a mouse model of long-lasting disease tolerance during severe sepsis, manifested by diminished immunothrombosis and organ damage in spite of a high pathogen burden. We found that both neutrophils and B cells emerged as key regulators of tissue integrity. Enduring changes in the transcriptional profile of neutrophils include upregulated Cxcr4 expression in protected, tolerant hosts. Neutrophil Cxcr4 upregulation required the presence of B cells, suggesting that B cells promoted disease tolerance by improving tissue damage control via the suppression of neutrophils' tissue-damaging properties. Finally, therapeutic administration of a Cxcr4 agonist successfully promoted tissue damage control and prevented liver damage during sepsis. Our findings highlight the importance of a critical B-cell/neutrophil interaction during sepsis and establish neutrophil Cxcr4 activation as a potential means to promote disease tolerance during sepsis.


Asunto(s)
Infecciones Bacterianas , Sepsis , Animales , Infecciones Bacterianas/metabolismo , Modelos Animales de Enfermedad , Ratones , Insuficiencia Multiorgánica/metabolismo , Insuficiencia Multiorgánica/patología , Neutrófilos/metabolismo , Sepsis/metabolismo
5.
PLoS One ; 17(7): e0271066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35816490

RESUMEN

As ACE2 is the critical SARS-CoV-2 receptor, we hypothesized that aerosol administration of clinical grade soluble human recombinant ACE2 (APN01) will neutralize SARS-CoV-2 in the airways, limit spread of infection in the lung, and mitigate lung damage caused by deregulated signaling in the renin-angiotensin (RAS) and Kinin pathways. Here, after demonstrating in vitro neutralization of SARS-CoV-2 by APN01, and after obtaining preliminary evidence of its tolerability and preventive efficacy in a mouse model, we pursued development of an aerosol formulation. As a prerequisite to a clinical trial, we evaluated both virus binding activity and enzymatic activity for cleavage of Ang II following aerosolization. We report successful aerosolization for APN01, retaining viral binding as well as catalytic RAS activity. Dose range-finding and IND-enabling repeat-dose aerosol toxicology testing were conducted in dogs. Twice daily aerosol administration for two weeks at the maximum feasible concentration revealed no notable toxicities. Based on these results, a Phase I clinical trial in healthy volunteers has now been initiated (NCT05065645), with subsequent Phase II testing planned for individuals with SARS-CoV-2 infection.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Aerosoles , Enzima Convertidora de Angiotensina 2 , Angiotensinas , Animales , Ensayos Clínicos Fase I como Asunto , Perros , Humanos , Ratones , Nebulizadores y Vaporizadores , Peptidil-Dipeptidasa A/metabolismo , Renina/metabolismo , Sistema Renina-Angiotensina , SARS-CoV-2
6.
Mucosal Immunol ; 15(5): 896-907, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35856089

RESUMEN

Environmental microbial triggers shape the development and functionality of the immune system. Alveolar macrophages (AMs), tissue-resident macrophages of the lungs, are in constant and direct contact with inhaled particles and microbes. Such exposures likely impact AM reactivity to subsequent challenges by immunological imprinting mechanisms referred to as trained immunity. Here, we investigated whether a ubiquitous microbial compound has the potential to induce AM training in vivo. We discovered that intranasal exposure to ambient amounts of lipopolysaccharide (LPS) induced a pronounced AM memory response, characterized by enhanced reactivity upon pneumococcal challenge. Exploring the mechanistic basis of AM training, we identified a critical role of type 1 interferon signaling and found that inhibition of fatty acid oxidation and glutaminolysis significantly attenuated the training effect. Notably, adoptive transfer of trained AMs resulted in increased bacterial loads and tissue damage upon subsequent pneumococcal infection. In contrast, intranasal pre-exposure to LPS promoted bacterial clearance, highlighting the complexity of stimulus-induced immune responses, which likely involve multiple cell types and may depend on the local immunological and metabolic environment. Collectively, our findings demonstrate the profound impact of ambient microbial exposure on pulmonary immune memory and reveal tissue-specific features of trained immunity.


Asunto(s)
Interferón Tipo I , Macrófagos Alveolares , Interferón Tipo I/metabolismo , Lipopolisacáridos , Pulmón , Transducción de Señal
7.
J Hepatol ; 77(5): 1373-1385, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35750138

RESUMEN

BACKGROUND & AIMS: Previous single-cell RNA-sequencing analyses have shown that Trem2-expressing macrophages are present in the liver during obesity, non-alcoholic steatohepatitis (NASH) and cirrhosis. Herein, we aimed to functionally characterize the role of bone marrow-derived TREM2-expressing macrophage populations in NASH. METHODS: We used bulk RNA sequencing to assess the hepatic molecular response to lipid-dependent dietary intervention in mice. Spatial mapping, bone marrow transplantation in two complementary murine models and single-cell sequencing were applied to functionally characterize the role of TREM2+ macrophage populations in NASH. RESULTS: We found that the hepatic transcriptomic profile during steatohepatitis mirrors the dynamics of recruited bone marrow-derived monocytes that already acquire increased expression of Trem2 in the circulation. Increased Trem2 expression was reflected by elevated levels of systemic soluble TREM2 in mice and humans with NASH. In addition, soluble TREM2 levels were superior to traditionally used laboratory parameters for distinguishing between different fatty liver disease stages in two separate clinical cohorts. Spatial transcriptomics revealed that TREM2+ macrophages localize to sites of hepatocellular damage, inflammation and fibrosis in the steatotic liver. Finally, using multiple murine models and in vitro experiments, we demonstrate that hematopoietic Trem2 deficiency causes defective lipid handling and extracellular matrix remodeling, resulting in exacerbated steatohepatitis, cell death and fibrosis. CONCLUSIONS: Our study highlights the functional properties of bone marrow-derived TREM2+ macrophages and implies the clinical relevance of systemic soluble TREM2 levels in the context of NASH. LAY SUMMARY: Our study defines the origin and function of macrophages (a type of immune cell) that are present in the liver and express a specific protein called TREM2. We find that these cells have an important role in protecting against non-alcoholic steatohepatitis (a progressive form of fatty liver disease). We also show that the levels of soluble TREM2 in the blood could serve as a circulating marker of non-alcoholic fatty liver disease.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Modelos Animales de Enfermedad , Humanos , Lípidos , Hígado/patología , Cirrosis Hepática/complicaciones , Macrófagos/metabolismo , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
8.
Elife ; 112022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35023830

RESUMEN

Despite tremendous progress in the understanding of COVID-19, mechanistic insight into immunological, disease-driving factors remains limited. We generated maVie16, a mouse-adapted SARS-CoV-2, by serial passaging of a human isolate. In silico modeling revealed how only three Spike mutations of maVie16 enhanced interaction with murine ACE2. maVie16 induced profound pathology in BALB/c and C57BL/6 mice, and the resulting mouse COVID-19 (mCOVID-19) replicated critical aspects of human disease, including early lymphopenia, pulmonary immune cell infiltration, pneumonia, and specific adaptive immunity. Inhibition of the proinflammatory cytokines IFNγ and TNF substantially reduced immunopathology. Importantly, genetic ACE2-deficiency completely prevented mCOVID-19 development. Finally, inhalation therapy with recombinant ACE2 fully protected mice from mCOVID-19, revealing a novel and efficient treatment. Thus, we here present maVie16 as a new tool to model COVID-19 for the discovery of new therapies and show that disease severity is determined by cytokine-driven immunopathology and critically dependent on ACE2 in vivo.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Interferón gamma/farmacología , SARS-CoV-2/patogenicidad , Inmunidad Adaptativa/inmunología , Animales , Modelos Animales de Enfermedad , Interferón gamma/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Peptidil-Dipeptidasa A/genética , Glicoproteína de la Espiga del Coronavirus/genética
9.
Am J Respir Cell Mol Biol ; 66(1): 64-75, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34586974

RESUMEN

Tissue-resident macrophages are of vital importance as they preserve tissue homeostasis in all mammalian organs. Nevertheless, appropriate cell culture models are still limited. Here, we propose a novel culture model to study and expand murine primary alveolar macrophages (AMs), the tissue-resident macrophages of the lung, in vitro over several months. By providing a combination of granulocyte-macrophage colony-stimulating factor, TGFß, and the PPARγ activator rosiglitazone, we maintain and expand mouse ex vivo cultured AMs (mexAMs) over several months. MexAMs maintain typical morphologic features and stably express primary AM surface markers throughout in vitro culture. They respond to microbial ligands and exhibit an AM-like transcriptional profile, including the expression of AM-specific transcription factors. Furthermore, when transferred into AM-deficient mice, mexAMs efficiently engraft in the lung and fulfill key macrophage functions, leading to a significantly reduced surfactant load in those mice. Altogether, mexAMs provide a novel, simple, and versatile tool to study AM behavior in homeostasis and disease settings.


Asunto(s)
Macrófagos Alveolares/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Hígado/metabolismo , Pulmón/patología , Pulmón/fisiopatología , Macrófagos Alveolares/patología , Ratones Endogámicos C57BL , Fenotipo , Proteinosis Alveolar Pulmonar/metabolismo , Proteinosis Alveolar Pulmonar/patología , Proteinosis Alveolar Pulmonar/fisiopatología , Transcripción Genética
10.
bioRxiv ; 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545364

RESUMEN

To develop a universal strategy to block SARS-CoV-2 cellular entry and infection represents a central aim for effective COVID-19 therapy. The growing impact of emerging variants of concern increases the urgency for development of effective interventions. Since ACE2 is the critical SARS-CoV-2 receptor and all tested variants bind to ACE2, some even at much increased affinity (see accompanying paper), we hypothesized that aerosol administration of clinical grade soluble human recombinant ACE2 (APN01) will neutralize SARS-CoV-2 in the airways, limit spread of infection in the lung and mitigate lung damage caused by deregulated signaling in the renin-angiotensin (RAS) and Kinin pathways. Here we show that intranasal administration of APN01 in a mouse model of SARS-CoV-2 infection dramatically reduced weight loss and prevented animal death. As a prerequisite to a clinical trial, we evaluated both virus binding activity and enzymatic activity for cleavage of Ang II following aerosolization. We report successful aerosolization for APN01, retaining viral binding as well as catalytic RAS activity. Dose range-finding and IND-enabling repeat-dose aerosol toxicology testing were conducted in dogs. Twice daily aerosol administration for two weeks at the maximum feasible concentration revealed no notable toxicities. Based on these results, a Phase I clinical trial in healthy volunteers can now be initiated, with subsequent Phase II testing in individuals with SARS-CoV-2 infection. This strategy could be used to develop a viable and rapidly actionable therapy to prevent and treat COVID-19, against all current and future SARS-CoV-2 variants.

11.
PLoS Pathog ; 17(4): e1009487, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33905460

RESUMEN

Lipocalin 2 (LCN2) is a secreted glycoprotein with roles in multiple biological processes. It contributes to host defense by interference with bacterial iron uptake and exerts immunomodulatory functions in various diseases. Here, we aimed to characterize the function of LCN2 in lung macrophages and dendritic cells (DCs) using Lcn2-/- mice. Transcriptome analysis revealed strong LCN2-related effects in CD103+ DCs during homeostasis, with differential regulation of antigen processing and presentation and antiviral immunity pathways. We next validated the relevance of LCN2 in a mouse model of influenza infection, wherein LCN2 protected from excessive weight loss and improved survival. LCN2-deficiency was associated with enlarged mediastinal lymph nodes and increased lung T cell numbers, indicating a dysregulated immune response to influenza infection. Depletion of CD8+ T cells equalized weight loss between WT and Lcn2-/- mice, proving that LCN2 protects from excessive disease morbidity by dampening CD8+ T cell responses. In vivo T cell chimerism and in vitro T cell proliferation assays indicated that improved antigen processing by CD103+ DCs, rather than T cell intrinsic effects of LCN2, contribute to the exacerbated T cell response. Considering the antibacterial potential of LCN2 and that commensal microbes can modulate antiviral immune responses, we speculated that LCN2 might cause the observed influenza phenotype via the microbiome. Comparing the lung and gut microbiome of WT and Lcn2-/- mice by 16S rRNA gene sequencing, we observed profound effects of LCN2 on gut microbial composition. Interestingly, antibiotic treatment or co-housing of WT and Lcn2-/- mice prior to influenza infection equalized lung CD8+ T cell counts, suggesting that the LCN2-related effects are mediated by the microbiome. In summary, our results highlight a novel regulatory function of LCN2 in the modulation of antiviral immunity.


Asunto(s)
Gripe Humana/inmunología , Lipocalina 2/metabolismo , Microbiota/inmunología , Transcriptoma , Animales , Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/virología , Femenino , Microbioma Gastrointestinal , Homeostasis , Humanos , Inmunidad , Gripe Humana/virología , Lipocalina 2/genética , Pulmón/inmunología , Pulmón/virología , Activación de Linfocitos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos
12.
Diabetes ; 70(9): 2042-2057, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33627323

RESUMEN

Obesity-induced white adipose tissue (WAT) hypertrophy is associated with elevated adipose tissue macrophage (ATM) content. Overexpression of the triggering receptor expressed on myeloid cells 2 (TREM2) reportedly increases adiposity, worsening health. Paradoxically, using insulin resistance, elevated fat mass, and hypercholesterolemia as hallmarks of unhealthy obesity, a recent report demonstrated that ATM-expressed TREM2 promoted health. Here, we identified that in mice, TREM2 deficiency aggravated diet-induced insulin resistance and hepatic steatosis independently of fat and cholesterol levels. Metabolomics linked TREM2 deficiency with elevated obesity-instigated serum ceramides that correlated with impaired insulin sensitivity. Remarkably, while inhibiting ceramide synthesis exerted no influences on TREM2-dependent ATM remodeling, inflammation, or lipid load, it restored insulin tolerance, reversing adipose hypertrophy and secondary hepatic steatosis of TREM2-deficient animals. Bone marrow transplantation experiments revealed unremarkable influences of immune cell-expressed TREM2 on health, instead demonstrating that WAT-intrinsic mechanisms impinging on sphingolipid metabolism dominate in the systemic protective effects of TREM2 on metabolic health.


Asunto(s)
Tejido Adiposo/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Obesidad/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Dieta Alta en Grasa , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Metabolismo de los Lípidos/fisiología , Ratones , Regulación hacia Arriba
13.
Front Immunol ; 12: 750466, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003062

RESUMEN

T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec-/- mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Inflamación/inmunología , Intestinos/inmunología , Proteínas Tirosina Quinasas/inmunología , Células Th17/inmunología , Animales , Diferenciación Celular/inmunología , Inflamación/patología , Intestinos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Tirosina Quinasas/metabolismo , Células Th17/patología
15.
Immunity ; 53(4): 793-804.e9, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32910906

RESUMEN

Allergies are considered to represent mal-directed type 2 immune responses against mostly innocuous exogenous compounds. Immunoglobulin E (IgE) antibodies are a characteristic feature of allergies and mediate hypersensitivity against allergens through activation of effector cells, particularly mast cells (MCs). Although the physiological functions of this dangerous branch of immunity have remained enigmatic, recent evidence shows that allergic immune reactions can help to protect against the toxicity of venoms. Because bacteria are a potent alternative source of toxins, we assessed the possible role of allergy-like type 2 immunity in antibacterial host defense. We discovered that the adaptive immune response against Staphylococcus aureus (SA) skin infection substantially improved systemic host defense against secondary SA infections in mice. Moreover, this acquired protection depended on IgE effector mechanisms and MCs. Importantly, our results reveal a previously unknown physiological function of allergic immune responses, IgE antibodies, and MCs in host defense against a pathogenic bacterium.


Asunto(s)
Inmunidad Adaptativa/inmunología , Inmunoglobulina E/inmunología , Mastocitos/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/inmunología , Alérgenos/inmunología , Animales , Femenino , Hipersensibilidad/inmunología , Hipersensibilidad/microbiología , Mastocitos/microbiología , Ratones , Ratones Endogámicos C57BL , Piel/inmunología , Piel/microbiología , Infecciones Estafilocócicas/microbiología , Infecciones Cutáneas Estafilocócicas/microbiología
16.
Front Immunol ; 11: 579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32318068

RESUMEN

The differentiation of naïve CD4+ T cells into T helper (Th) subsets is key for a functional immune response and has to be tightly controlled by transcriptional and epigenetic processes. However, the function of cofactors that connect gene-specific transcription factors with repressive chromatin-modifying enzymes in Th cells is yet unknown. Here we demonstrate an essential role for nuclear receptor corepressor 1 (NCOR1) in regulating naïve CD4+ T cell and Th1/Th17 effector transcriptomes. Moreover, NCOR1 binds to a conserved cis-regulatory element within the Ifng locus and controls the extent of IFNγ expression in Th1 cells. Further, NCOR1 controls the survival of activated CD4+ T cells and Th1 cells in vitro, while Th17 cell survival was not affected in the absence of NCOR1. In vivo, effector functions were compromised since adoptive transfer of NCOR1-deficient CD4+ T cells resulted in attenuated colitis due to lower frequencies of IFNγ+ and IFNγ+IL-17A+ Th cells and overall reduced CD4+ T cell numbers. Collectively, our data demonstrate that the coregulator NCOR1 shapes transcriptional landscapes in CD4+ T cells and controls Th1/Th17 effector functions.


Asunto(s)
Diferenciación Celular/inmunología , Co-Represor 1 de Receptor Nuclear/inmunología , Células TH1/inmunología , Células Th17/inmunología , Traslado Adoptivo , Animales , Linfocitos T CD4-Positivos/inmunología , Colitis/inmunología , Ratones , Transcripción Genética
18.
J Autoimmun ; 108: 102379, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31883829

RESUMEN

Rheumatoid Arthritis (RA) represents a chronic T cell-mediated inflammatory autoimmune disease. Studies have shown that epigenetic mechanisms contribute to the pathogenesis of RA. Histone deacetylases (HDACs) represent one important group of epigenetic regulators. However, the role of individual HDAC members for the pathogenesis of arthritis is still unknown. In this study we demonstrate that mice with a T cell-specific deletion of HDAC1 (HDAC1-cKO) are resistant to the development of Collagen-induced arthritis (CIA), whereas the antibody response to collagen type II was undisturbed, indicating an unaltered T cell-mediated B cell activation. The inflammatory cytokines IL-17 and IL-6 were significantly decreased in sera of HDAC1-cKO mice. IL-6 treated HDAC1-deficient CD4+ T cells showed an impaired upregulation of CCR6. Selective inhibition of class I HDACs with the HDAC inhibitor MS-275 under Th17-skewing conditions inhibited the upregulation of chemokine receptor 6 (CCR6) in mouse and human CD4+ T cells. Accordingly, analysis of human RNA-sequencing (RNA-seq) data and histological analysis of synovial tissue samples from human RA patients revealed the existence of CD4+CCR6+ cells with enhanced HDAC1 expression. Our data indicate a key role for HDAC1 for the pathogenesis of CIA and suggest that HDAC1 and other class I HDACs might be promising targets of selective HDAC inhibitors (HDACi) for the treatment of RA.


Asunto(s)
Artritis Reumatoide/etiología , Artritis Reumatoide/metabolismo , Susceptibilidad a Enfermedades , Histona Desacetilasa 1/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales , Artritis Reumatoide/patología , Biomarcadores , Colágeno/efectos adversos , Citocinas/metabolismo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Histona Desacetilasa 1/genética , Humanos , Mediadores de Inflamación/metabolismo , Ratones , Ratones Noqueados , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
19.
Cell Rep ; 29(13): 4447-4459.e6, 2019 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-31875552

RESUMEN

Forkhead box protein P3+ (FOXP3+) regulatory T cells (Treg cells) play a key role in maintaining tolerance and immune homeostasis. Here, we report that a T cell-specific deletion of the transcription factor MAZR (also known as PATZ1) leads to an increased frequency of Treg cells, while enforced MAZR expression impairs Treg cell differentiation. Further, MAZR expression levels are progressively downregulated during thymic Treg cell development and during in-vitro-induced human Treg cell differentiation, suggesting that MAZR protein levels are critical for controlling Treg cell development. However, MAZR-deficient Treg cells show only minor transcriptional changes ex vivo, indicating that MAZR is not essential for establishing the transcriptional program of peripheral Treg cells. Finally, the loss of MAZR reduces the clinical score in dextran-sodium sulfate (DSS)-induced colitis, suggesting that MAZR activity in T cells controls the extent of intestinal inflammation. Together, these data indicate that MAZR is part of a Treg cell-intrinsic transcriptional network that modulates Treg cell development.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/metabolismo , Animales , Diferenciación Celular , Colitis/inmunología , Sulfato de Dextran , Humanos , Ratones Noqueados , Timo/citología , Transcripción Genética
20.
Cell Death Dis ; 10(12): 944, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31822659

RESUMEN

Ecotropic virus integration site 1 (EVI1), whose overexpression characterizes a particularly aggressive subtype of acute myeloid leukemia (AML), enhanced anti-leukemic activities of all-trans retinoic acid (atRA) in cell lines and patient samples. However, the drivers of leukemia formation, therapy resistance, and relapse are leukemic stem cells (LSCs), whose properties were hardly reflected in these experimental setups. The present study was designed to address the effects of, and interactions between, EVI1 and retinoids in AML LSCs. We report that Evi1 reduced the maturation of leukemic cells and promoted the abundance, quiescence, and activity of LSCs in an MLL-AF9-driven mouse model of AML. atRA further augmented these effects in an Evi1 dependent manner. EVI1 also strongly enhanced atRA regulated gene transcription in LSC enriched cells. One of their jointly regulated targets, Notch4, was an important mediator of their effects on leukemic stemness. In vitro exposure of leukemic cells to a pan-RAR antagonist caused effects opposite to those of atRA. In vivo antagonist treatment delayed leukemogenesis and reduced LSC abundance, quiescence, and activity in Evi1high AML. Key results were confirmed in human myeloid cell lines retaining some stem cell characteristics as well as in primary human AML samples. In summary, our study is the first to report the importance of EVI1 for key properties of AML LSCs. Furthermore, it shows that atRA enhances, and a pan-RAR antagonist counteracts, the effects of EVI1 on AML stemness, thus raising the possibility of using RAR antagonists in the therapy of EVI1high AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , Proteína del Locus del Complejo MDS1 y EV11/genética , Receptor Notch4/genética , Tretinoina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/patología , Ratones , Células Mieloides/efectos de los fármacos , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...